
aper

gust

Final State n_t_exactmns and

Inclusive Nuclear Collisions

Francis A. Cucinotta ...............

and Rajendra R. Dubey

f
t

i

i

(NASA-TP-3353) FINAL STATE

INTERACTIONS AND INCLUSIVE

COLLISIONS (NASA) 31 p

NUCLEAR

Hl/73

N94-12435

Unc|as

0185018

g

I |
I|



.k

I

" Y



NASA
Technical

Paper
3353

1993

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

Final State Interactions and
Inclusive Nuclear Collisions

Francis A. Cucinotta

Langley Research Center

Hampton, Virginia

Rajendra R. Dubey

Old Dominion University

Norfolk, Virginia





Abstract

A scattering formalism is developed in a multiple scattering model to describe inclusive

momentum distributions for high-energy projectiles. The effects of final state interactions on

response functions and momentum distributions are investigated. Calculations for high-energy

protons that include shell model response functions are compared with experiments.

Introduction

A realistic description of galactic cosmic ray transport through bulk shielding requires an

extensive data base of nuclear interaction cross sections. (See ref. 1.) Traditionally, velocity-

conserving interactions have been assumed for all ions with a mass number greater than one for

easier numerical computations. (See ref. 1.) As transport algorithms become more accurate, this

assumption will likely be removed; the result will be an increased need for nuclear data bases

that include secondary particle spectra.

Previously (refs. 2 and 3), we developed a multiple scattering series to describe the energy

loss spectra of fast ions in nuclear collisions. This multiple scattering series, which describes the

quasi-elastic peak, was effectively summed by expressing the many-body response functions of the

target as a convolution of the one-body response function through an energy shift approximation.

For composite projectiles, incoherent corrections were shown to slightly reduce the cross section

(refs. 2 and 3), when uncorrelated form factors were assumed. Multiple scattering effects
were also shown to shift the position of the quasi-elastic peak considerably, which agrees with

experiments. In references 2 and 3, a two-dimensional representation of the target response

function was used in the eikonal formalism. In this paper we treat the longitudinal aspects of

the response; however, we used the eikonal approximation to evaluate the cross section. In this

paper we also focus on the final state interaction (FSI) between knocked-out target nucleons and

the target recoil. A treatment of the FSI in inclusive scattering is important for understanding
scaling phenomena (refs. 4-6) and transparency (refs. 7 9) in high-energy collisions as well as in
the intranuclear cascade.

In inclusive scattering with fast ions, the projectile has left the scattering region before

the FSI; thus, a simplified treatment of ion effects on the projectile wave function may be

valid. Focusing on energy losses above low-lying collective states and below pion production

thresholds, we consider ejectiles of the target using the approach of Horikawa et al. (ref. 10)
for decomposition of the response function into elastic and inelastic FSI's. We then evaluate

these terms by using the eikonal approximation to the Moller operator. Pauli exclusion effects

are neglected in this preliminary treatment of the FSI. A rough estimate of exclusion effects is

made from a medium, modified, two-body cross section. Proton projectiles are then compared
with experiments based on the shell model in a harmonic oscillator basis. Included are the s, p,

and d shells that allow calculations for targets up to 4°Ca.

Multiple Inelastic Collision Series

In the eikonal coupled channels (ECC) model (refs. 11-13), the matrix of scattering ampli-

tudes for all possible projectile-target transitions is given by

,k f . .-f(q) = 27r J d2b e'q'b{ e'X(b) --
(1)

where barred quantities represent matrices, b is tile impact parameter vector, q is the momentum

transfer vector, and k is the projectile-target relative wave number. In equation (1), 2 is an

ordering operator for the z-coordinate that is necessary only when noncommuting two-body



interactionsare considered.The eikonalphaseelementsare definedby matrix elementsof
arbitrary projectile-targetstatesof the followingoperator:

F/
X(b) -- (27r)2kN N _ adz d3q eiq'_ e -zqra ezq'rJfNN(q)

(2)

where a and j label the projectile and target constituents, respectively; r is the internal nuclear

coordinate; rl is the projectile-target separation with rl = (b, z); fNN is the nucleon-nucleon

(NN) amplitude; and kNN is the NN relative wave number.

When treating inelastic scattering, we assume that the off-diagonal terms in X (denoted by

Xo) are small compared with the diagonal ones, XD; then we expand f in powers of Xo to

f(q) = _ d2b eiqbeiXD(b) _ [i-X°(b)]mm!
rn=l

(3)

We also will make the assumption that all the diagonal terms are represented by the ground-

state elastic phase X. Using equation (3), we sum over target final states X (continuum) to find

the inclusive angular distribution for the projectile when its mass remains unchanged as in

d-_ IN (27r) 2 d2b d2b' eiq'(b-b') ci[X(b)-Xt(b')]

1

×E 5: < >< m
X_0 m= 1

10pOT > (4)

Equation (4) only allows for a study of the momentum transfer spectra of the projectile. However,

in any consideration of the projectile energy loss, energy conservation must be treated. Based
on continuum states for the target final state, energy conservation leads to

e2_ _ k2 f A_dQ dEp,]i N =- (27r) 2 d2b d2b' eiq.(b-b') ei[X(b)-X+(bt)] _ Wm(b,b',w) (5)
m=l

and
AT

dc_ ) =/d2be_2imX(b ) _ Wrn(b,b, aJ) (6)
dEpi IN m=l

where Ep_ is the energy of the projectile in the final state, a; is the projectile energy loss, and
we define

145n(b, b_,¢o) - 1 f ji_i1 [ dkj ]_(E/- Ei)(m!)2 = L(2_)3J

X < kjOpI [X+(b')] m IOpOT >

< OpOTI Ix(b)] m lOpkj >

(7)

where kj is the wave number vector of a knocked-out target nucleon.
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Theinelasticcollisionseriesof equation(5) isexpectedto convergefairly rapidly. In thenext
sectionweconsiderthe evaluationof this seriesfor anuncorrelatedtargetwavefunction.

Collision Terms in Plane Wave Approximation

Wefirst considerthe evaluationof the collisionterms Wm using plane waves for the final

continuum states of the target. The projectile motion is treated in the coherent approximation.
(See ref. 1.) We consider a three-dimensional representation of the collision terms rather than

just the transverse terms considered in references 2 and 3. The effects of correlations are not
treated herein.

The first collision term is written

W1 (b,b',w) - A2pAT f_ocdzt/dqdq'(27c)4k2N /_ccdz oc eiq'_? e-iq"*l'

x F(q)F(q')fNN(q)ftNN(q t) f d3k 6@- Ek)GOrk(q) Gtk0T(q ') (8)

where GOTk is the transition form factor of the target and Ap and A T are the projectile and
target mass numbers, respectively. It is helpful to change variables as

1
a = _ (q + q') (9)

/3 = q - q' (10)

x = r - r / (11)

1
y = _ (r + r') (12)

Also,

R = I/- r/' (13)

1
S = _(r/+ 7/') (14)

with the transverse parts denoted R± and S±, respectively. The first collision term is rewritten
using equations (9) (14) as

A2AT f dz dz t d3a d3fl e ia'R e i/3'sWl (a., si,co) - (2 )4k N

× A (a + _) At (v_ - _) Rl(a,/3, co) (15)

where we have defined

and

A(q) = F(q)fNN(q )

d3k 5"co (aRl(a,/3, co) =f_ ( -Ek)G0k

3
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Introducing the Fourier transform pair

Rl(C_,_,co) = / _--Tr) eiWtRl(_,_, t)

and

(is)

R1 (c_, _, t) ---- / dco e-iwtR1 (o_, _, co) (19)

allows us to evaluate the energy-conserving delta flmction in equation (17). (See ref. 14.) For

the target nucleons, we assume that

k 2

Ek : 2rr_"----_@ CB1 (20)

where m N is the nucleon mass, CB1 is the binding energy, and equation (19) is

dk e-ieBlt e_ik2t/2mN eik.xRl(a,/_,t) = _ dx dy

× e ia'x ¢i/_-y p Y + _,Y --

where the density matrix is p(r, r l) and is defined by

p(r, r') = _5(r) _t(r')

and (I) is the ground-state single-particle wave function. We then find

xrnN_l d3x d3y c i_'x e i/3"y jo(_lx)p (y -F _,y - 2) O (co -eB1 )
R 1(o_, _, _) -- (27r)2

where jo is a spherical Bessel function, O is tile unit step function, and

(21)

(22)

(23)

(24)
_1 = V/2mN (co- gB1 )

The higher order terms are more difficult to treat because of the enumeration of projectile

and target intermediate states. A first approximation is to assume that the projectile remains

in tile ground state throughout the collision (coherent projectile approximation).

Using similar coordinate changes as described above, we find the ruth-order collision term as

Wm(Rl, Sl, co) = A2m_m dz, f fi [da jP "'T dz d3fljf
! 2 2m 2._(2m+2) J

(m.) kNN ( ,,] j=l

X Rra(O:l,..., O_m, _1,...,/3m, co) (25)
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where

Rm(_l,... Olm,f_l,... _m,W)- mN / 1 \3m/2 r m [

x, .]
_3m/2-1

O (w -- eBm) (26)

where Rm = 0 for w < eBm. The solutions for the ruth-order terms in equation (26) result from

the Fourier transform of the temporal response. Because we keep the longitudinal momentum

transfer in the response (as opposed to the approach of cylindrical geometry in references 2

and 3), the order of the Bessel function in Rm differs from references 2 and 3. For forward-

peaked wave functions, we approximate

Rm(_l,...,_m,l_l,...,)_m,W) _Crn(W-_Bm)m-1H R 1 otj,_j, +0 X

j=l

(27)

such that

(--rrt.-_) 2 Wl R±,S±, _]j

re 2
where C1 -- 1, 6"2 = _[, C3 = ]-_, and C4 = 2_' Equation (27) is found by considering the

Taylor series for J3m/2-1" The effective energy shift in equation (27) for the m > 2 approximation
and the coefficients Cm differ from references 2 and 3 because of the longitudinal contributions

to Rm that are included here. We then have for the energy loss spectra (eq. (5)) in a coherent :_

projectile model,

k 2

(2_) 2 S d2R d2S ciq'R± ei[X(R±+S±I2)-Xt(R±-S±/2)]

AT Cm(w )m-1 [ ( _rn ,_]mX E -- EBm
_rt.-_) 2 W 1 R±,S+, _]j

m=|

(29)

and

do/@' _ d2S e-2 Im X(Sj_)

AT Cm(W--6Brn)m-1 [W1 (O, Sl __mm) ]×E
m=l (--m'-_)2

7Tt

(30)
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The coherent approximation assumes that the projectile remains in the ground state through-

out the scattering. The leading-order correction to the cohcrent terms occurs in the collision

term I¥2 and corresponds to the following replacement of W2 from references 2 and 3:

F(al-
--,A2p{[F(2oL1)+(Ap-1)

(31)

which follows from using closure on the projectile intermediate states. Physically, equation (31)

allows the projectile to dissociate in the intermediate state. Further modifications are necessary
when correlation effects are treated.

Final State Interactions

The target transition form factors will describe the effects of the FSI between the unobserved

ejected nucleons and the recoiling target nucleus. We now consider these effects using the
eikonal form of the optical model. Because the measurement is of the fast primary, we expect
the details of the FSI on the primary wave function to be small. Therefore, we will introduce

several approximations to obtain a tractable solution.

The transition form factor of the target appearing in the first-order response is given by

GOTkl (q) = < 0T ] eiq'r I ¢(k-i ) > (32)

where ¢(k_)is the outgoing scattering state. With the Moiler operator _(k-1), the transition form

factor is written using plane-wave states as (ref. 4)

GOTk z(q) = < OT I eiq'r _(-1 ) ] kl > (33)

The Moller operator is related to the Green function _(-) and to the transition operator T as

_(1)= 1 +_(o-)T (34)

Using equations (33) and (34), we can separate the first-order response function into three terms
corresponding to the plane-wave response, elastic distortion in the FSI, and inelastic reaction in

the FSI (cascade). Thus,

Rl(q, qt,w)=RPW + R1Dw + RI1N (35)

The plane-wave term was described above. For the DW term, we have

RDW fdnkl [---- _ 5 (w -- Ekl) < O R [e iq'r go(-)_ lkl > < kl Ie-iqtr' [OR >

+ < OR [ e iq'r [ kl > < kl ] g(-)fTf e-iqt'r' [OR > ] (36)



where ]OR > is the ground-state wave function of the recoil nucleus. The cascade term describes

a new inelastic collision series of the ejected nucleon with kl reacting on the target recoil given

by

AT

R[N=_'_/ d3kl flrd3kjl
(27r)3 [(2_)3jf=2 j=2

02 -- Ekl - _ Ekj

j=2

X < OR [ e iq'r _(o-) r[ k 1 HKJ >

j=2

e

× < kl H kj I g(o-)tr _ e -iq''r' 10R >

j=2

(37)

_(k- ) = ei_(_-)(s,z)

In the optical model (refs. 5-7), the Moller operator is expressed by the matrix

(38)

where s denotes the transverse component of r and the subscript R indicates the coupling phases

for the recoil system with matrix elements

1)(2_)2k_N fzz dq aOrkl (q)fNN(q) (39)

where the energy dependence of X (-) is determined by k 1 rather than by the beam energy.

diagonal part of _(kl ) determines the PW and DW response terms that we combine asThe

R1EL(q, q',02) = RPW(q, q',02)+ RIDW(q, qt, w) (40)

If we neglect incoherent contributions to the elastic distortion, we have

REL (q,q',02) = / (-_)3 _ (co--Ekl)d3kl /dr dr' eiq're-iq"r'

xe-ikl(r-r')p(r,r')exp{i[X(R-) (s,z)--X (-)' (s',z')] } (41)

Expanding the phase of the distorted wave in equation (41) about r - r I = 0 and keeping

only the first term were shown to provide accurate approximations for the distorted wave in

reference 15 and are used here. Thus,

.EL(., _,02) ==_/ d3k  (02_Ek)fa3xa%ei..xei y

( X X) _2 Im _(-)(y)o(O 2 ) (42)xeik'xp y+ 2' y- 2 e --eB1

The calculation of X (-) is described in the appendix.
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We make one further approximation by noting that tile two-body parameters in X (-) change

smoothly with the energy loss and provide the only dependence on kl for this phase. Thus, we
write

(q, ei.x e ,y )
/d3x d3y jo((lx)O -- CB 1

-2 Im X(-)(y)x
(43)

with the effective energy used for evaluating X(-) given by E = w - eB1. The Paul± exclusion

effects should be more important in X (-) than the P-T elastic coupling and will be approxi-

mated by the effective two-body cross section discussed below.

We next consider the inelastic part of tile response function. As in equation (3), we expand

_Q-) into diagonal and off-diagonal parts. The off-diagonal terms correspond to inclusive

reactions"' between kl and the target recoil. The first term corresponds to kl ejecting a second

nucleon from the target where we are ignoring low-lying excited states. That term is given by

dkl dk2 (w Ekl /R_N(q, qt,w) = (27r)3 (27r)3 5 -- -- Ek2 ) dr dr' e iq'r e -iq''r'

x e ikl'(r-r') p(r,r')el[ XR(s'z)-Xt_(s''z')]

x < OR I _n(s, z) ]k2 > < k2 I _tR(s',z') [0R > (44)

Using approximations similar to those made in equations (27), (42), and (43), we reduce

equation (44) to

xp (y+_,y---_x X)jo(_2x)W(-)(x,y,_2) (45)

where we define the collision term between recoil and nucleon knockouts as

=(AT_l) fxCC fyeC /d3o/d3_leia_.x(z)W(-)(x'y'_2) (27r)4k2N z dz z dz' e if¢'y(z')

x fNN(O/+ ,Ot/2)ffNN (or' -- _Ot/2)RPIW(o/, _', _2) (46)

where x(z) = (x±, z) and y(z) = (Yl, z'). In equation (46) the plane-wave response function
appears evaluated at the value _2- Higher order terms in the intranuclear cascade could be added

to the response function in equation (45) in a similar manner.
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Method of Calculation and Results

By usingshellmodelwavefunctionsin a harmonicoscillatorbasis,the densitymatrix for
AT <_ 40 is found as

( x x)P Y+_,Y-_ -
1 e_ 2/R e_x2/4R + x2_

3/2

(47)

where the constant R T represents the target matter radii and as, ap, and a d are occupation
probabilities for s-, p-, and d-shell nucleons, respectively, given by (for A T < 40)

4
as ---- _ (AT :> 4)

1 (A T <_ 4) (48)

[ A__ 2 (AT <_ 4)

4
3ap = (4 > AT <_ 16) (49)

[. W_T (A T > 16)

0 (AT <_ 16)6ad = -_T 16 (AT > 16) (50)

In equations (47) -(50) we treat the degenerate ld and 2s shells approximately as a single shell,

denoted d shell, because spin effects are not considered. In table I, values for shell-model
occupation probabilities are given for several nuclei.

The plane-wave response function for the s shcll is found by using equation (47) in
equation (23) as

rnNasRT e -R232/4 e-R_ (a2+_2) sinh (2/_a_) (51)

Table I. Shell Model Parameters

Nucleus

4He

6Li

9Be

12 C

160

2ONe

27A1

4OCa

a8

1.0

.57

.444

.333

.25

.20

.148

.1

ap

0

.143

.185

.222

.25

.20

.148

.1

ad

0

0

0

0

.033

.068

.1

aRT, fm

1.33

2.11

1.79

1.69

1.83

2.14

1.91

2.10

aVahms for RT from references 1 and 16.
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The plane-wave response function for the p-shell is found by

-4.4 <cosh(_R_<)}e-R2_2/4 e-R2(_2+_ 2) (52)

and the plane-wave response function for the d-shell is found by

R d - + + +
+8p_2_ 2] sinh(2R2_)-/_f1213+/_(_2+_2)] sinh(2/_)

+ _lR4_4T_" sinh (2P_, _) - [4P_ a_ + 8P_ (_(c_ 2 + _2)] cosh (2R_)

+_ag_< cos_(_R_<) } e-R2 B2 /4 e-R2(a2+_ 2) (53)

In an evaluation of the collision terms, the energy loss is taken as wi = w - eBi, where CBi is

the separation energy corresponding to the orbit i. (See ref. 10.) Values for eBi for a few nuclei

are listed in table II as found in references 10 and 16. Analytic forms for R Dw and R IN are not

possible, so numerical integration is used.

Table II. Binding Energies of Shell Model Orbits

Nucleus Orbit

4He s

6Li s

p

9Be s

P

12C s

P

160 S

P

27A1 s

P

d

4°Ca s

P

d

aValues for _B1 from references l0 and 16.

aeB1 , MeV

20.5

26.0

5.2

27.2

18.2

38.7

17.5

39.0

18.0

50.0

22.0

15.0

51.0

35.0

15.0
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For Ap <_ 4 we use F(q) = e-Ft2Pq2/4, where the constant Rp represents the projectile matter

radii. The two-body amplitude is parameterized as

a(p + i)kNN e_Bq2/2 (54)
fNN -- 4r

where a is the two-body cross section, B is the slope parameter, and p is the ratio of real to

imaginary parts of the forward, two-body amplitude. Values for the two-body parameters are

listed in table III for calculated versus laboratory (lab) energies.

Table III. NN Amplitude Parameters

rlab, MeV app, fm 2 Crnp, fm 2 Bpp, fm 2 Bnp, fm 2 ppp Pnp

558 3.85 3.58 0.12 0.12 0.40 -0.16

800 4.67 3.78 .16 .16 .18 -.33

In figures 1-3 we show the diagonal part (fl -- 0) of the response function for 4He, 12C, and
27A1 at several values of a versus the energy loss. Binding energies assumed for these nuclei are

listed in table II. The multiple shell structures for 12C and 27A1 are scen at lower values of a in

figures 2 and 3. In figures 4 6 the off-diagonal part (fl ¢ 0) is displayed for c_ = 1.5 fin -1. The

breaking of translational invariance in finite nuclei leads to a nonzero response for the off-diagonal

components. Figures 4-6 show that the off-diagonal terms quickly dampen as we increase the

target mass number, and the results for nuclear matter should be accurate for nuclei heavier
than those considered here. Calculations that include ground-state correlations by Alberico et al.

(ref. 17) also suggest that damping saturates at about A T = 40. Figure 7 illustrates the complex
structure of 27A1 caused by the multiple shell structure and the off-diagonal response.

The response terms with contributions for the FSI (eqs. (43) and (45)) contain the free two-

body amplitude evaluated at an effective energy E that was determined by the projectile energy

loss as E = w - CB1. For the relatively low values of E, we should expect significant deviations
from the impulse approximation. We follow the usual approach of replacing the free two-body

amplitude in equation (54) with an effective one that approximately treats some of the medium
modifications. Smith and Bozoian (ref. 18) provide the parameterization

100 I }
r_ (TL2+ 182) (TL < 164 MeV)= (55)

2m
[_L 0.6 r L (T L > 164 MeV)

where PL and T L are the nucleon kinetic momentum and energy, respectively, in the laboratory
that correspond here to E. The slope parameter is assumed as zero, which corresponds to the

isotropic scattering that is approximately true at low energies. Equation (55) is based on optical

potential studies. In reality, _ should contain a dependence on the target density and will differ
for elastic or inelastic collision terms because the number of off-the-mass shell particles is not

the same in these two cases.

Comparisons of the distorted-wave and inelastic response corrections with plane-wave re-

sponse calculations are shown in figures 8 11 for 12C. The DW response (dashed line) is lower

than the PW response (solid line) at small values of a. The shapes of the response functions for

the diagonal terms show only a slight shift in the position of the quasi-elastic peak because of

11



the inelasticterm. In contrast,theoff-diagonalcontributions(figs.10and 11)aresubstantially
modified.Here,the distortedwavesalter the interferencepatternsbecauseof the multipleshell
structure. Calculationsfor heaviertargetswerenot performedat this time becauseevaluations
of inelasticresponsefunctionareextremelycomplexfor the highershells.

Calculationsof momentumspectraareshownin figures12 15at severalanglesalongwith
comparisonswith experimentaldata (ref. 19) for inclusiveproton scatteringon 6Li, 12C,27A1,
and 4°Caat a beamenergyof 800MeV. At the lowestmomentumvalues,the effectsof pion
productionareseenbut arenot includedin ourcalculations.Thecalculationsin figures12 15
aremadewith the plane-waveresponsemodelandincludecontributionsup to thefourth order.
Thesecond-andhigher-ordertermsaresmall;however,thesetermsbecomemoreimportantwith
increasingtargetmassand momentumtransfer. In figures16and 17,a similar comparisonis
madewith theexperimentaldataof reference20for protonsat 558MeV. Clearly,thedominant
contribution for nucleon-nucleuscollisionsis the first collisionterm, whichsuggeststhat an
improveddescriptionof the datawill requiregoingbeyondtheindependentparticlemodelused
hereto includecorrelationeffects.This dominanceof the first collisionterm contrastswith our
previousresultsfor compositeprojectiles(refs.2 and 3) in which coherence effects are important

for multiple scattering terms.

In figures 18 and 19, calculations are shown for 12C and 27A1 that include the effects of final
state interactions in the first-order response functions for 800-MeV proton beams. The inelastic
collision .term is seen to contribute to the distribution in a manner close to the plane-wave

double collision term; this contribution is expected because the terms have the same dependence

on energy loss and ground-state wave function. The combined effects of the distorted wave,

ejectile, and recoil reduce the peak of the cross section with a slight shift in position. The
inelastic collision term contributes primarily in the dip region between the quasi-elastic and

pion production peaks.

Concluding Remarks

A formalism for describing the energy loss spectrum of fast ions in nuclear collisions at high

energy was developed that includes the effects of final state interactions. Calculations in the
independent particle model with harmonic oscillator wave functions suggest that a signature of
the intranuclear cascade is seen in the dip region between the quasi-elastic and pion production

peaks. The effects of the nuclear medium and the Pauli blocking are expected to be important in

providing a more complete treatment of cascade effects than discussed in this paper. However,
the present results indicate that cascade effects can be treated in an approach that is similar to

the quantum mechanics used here.

NASA Langley Research Center
ttampton, VA 23681-0001
June 14, 1993
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Appendix

Calculation of x (-)

The outgoing distorted phase for the elastic coupling of the ejected nucleon with the core is
written

X(R-)(y ) __ (A____T---1_)) /°°dz / d3 q eiq.y G(q)_NN(q) (AI)
(27r)2k2N JYz J

The form factor is found from the one-body density matrix in equation (47) as

where

G(q) = (C1 Jr-C2q 2 -4-C3q 4) e -R2q2/4

C1 = as + 3ap + 6a d = 1

C2=-R2(_ ap+3ad)

(A2)

(A3)

(A4)

C3 = 4R__.!_1ap (A5)
8

Using the two-body amplitude of equation (54), we have for the imaginary part of X (-)

ImX(-)(y)- (AT-1)N fy°Cdz f d3q(-_-_)7(4-_ z e iq'y (C1 + C2q2+ C3q 4) e -wq2 (i6)

where

w= R_r + B
4 2

Integration of equation (A5) leads to

Im X(-)(y) - (AT-l)_e-y2/4W[AlF(_,y2/4w)_w---vf_

+4wA2F( 3 Yz2"] 16w2AaF(5 Yz2'_]2' + ,,2' 4V/

where F(a, u) is the incomplete gamma function defined by

V(a, u) = e -t t a-1 dt

and the coefficients A1, A2, and A 3 are defined as

Al=Cl+-w - 4-'_w] +w--2 - 4w + 16_w2J

C2 A- C3 ( 5 y2
A2

13
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and
A3- C3 (112)

16w 4

The energy variation of Im _(-) is through the two-body parameters N and B that are isospin

averaged and evaluated at the energy w - eB in equation (43).

The coupling between the projectile and target can be evaluated from equation (18) by

replacing (A T - 1) with ApAT, letting yz _ -oc, using two-body parameters appropriate for

the beam energy, and redefining w as

R__ B
w=--/_ + +-- (A13)

4 2

where we assume a light projectile when a Gaussian form factor is sufficient.
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Figure 1. Diagonal part of first-order response function versus energy loss for 4He with t3 = 0.
All dimensions are in fin -1.
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Figure 2. Diagonal part of first-order response function versus energy loss for 12C with fl = 0.
All dimensions are in fm -1.
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